p53-dependent S-phase damage checkpoint and pronuclear cross talk in mouse zygotes with X-irradiated sperm.

نویسندگان

  • Tsutomu Shimura
  • Masao Inoue
  • Masataka Taga
  • Kazunori Shiraishi
  • Norio Uematsu
  • Norihide Takei
  • Zhi-Min Yuan
  • Takashi Shinohara
  • Ohtsura Niwa
چکیده

One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [(3)H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G(1)/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53(-/-) zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21(-/-) zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of p 53 Dependent Damage Response in Sperm - irradiated Mouse Embryos Megumi TOYOSHIMA

p53 dependent S-phase checkpointtMouse embryofPre-implantation/p53lp21/Apoptosis. Ionizing radiatien activates a series of DNA damage response, cell cycle checkpoints to arrest cells at GlfS, S and G2/M, DNA repair, and apoptosis. 1[he DNA damage response is thought to be the major deteminant of cellular radiosensitivity and thought to operate in all higher eukaryotic ceNs. However, the radiose...

متن کامل

Sperm DNA damage in mice irradiated with various doses of X-rays alone or in combination with actinomycin D or bleomycin sulfate: an in vivo study

Background: DNA damage in male germ cells due to exposure to environmental and manmade physico-chemical genotoxic agents is considered as the main cause of male infertility. The aim of this study was to evaluate the effects of combined modalities (radiotherapy and chemotherapy) routinely used for cancer treatment on mouse sperm chromatin in vivo. Materials and Methods: Forty-eight mice were div...

متن کامل

Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes

Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, ...

متن کامل

Zygotic G2/M Cell Cycle Arrest Induced by ATM/Chk1 Activation and DNA Repair in Mouse Embryos Fertilized with Hydrogen Peroxide-Treated Epididymal Mouse Sperm

Human sperm cryopreservation for assisted reproduction is compromised by ROS-induced sperm cryodamage. Our previous model study in which mouse sperm were treated with H₂O₂ to simulate sperm DNA-damage caused by cryopreservation-induced ROS have discovered that mouse embryos fertilized with treated sperm showed a delay in cleavage that might be associated with cell cycle arrest. The DNA-damage c...

متن کامل

Mouse Zygotes Respond to Severe Sperm DNA Damage by Delaying Paternal DNA Replication and Embryonic Development

Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2002